
A Symbolic Newton-Raphson Method of Finding
Roots

Marc A. Murison

Astronomical Applications Department
U.S. Naval Observatory
murison@aa.usno.navy.mil

http://aa.usno.navy.mil/murison/

December 1996

1. Introduction

 Suppose we have a function ()f x for which we'd like to find a root. At some arbitrary point
 = x a, the equation of the line tangent to ()f x is

(1) = y +

∂

∂

x
()f a x b

where b is the y intercept and we use the notational convention that
∂

∂

x
()f a is the derivative of ()f x

evaluated at = x a. In the Newton-Raphson method of root-finding, we assume = x a is close to a
root, which we will denote as x

0
. Then the intersection of the line with the x axis, at the point x

1
,

will be closer to x
0
 than a. We then find the intersection of the line tangent to ()f x

1
 with the x

axis, call it x
2
. We iterate in this fashion until at some point the x axis intersection point, say x

n
, is

satisfactorily close to to the actual root x
0
.

 The y intercept of the line described by eq. (1) is

(2) = b − ()f a

∂

∂

x
()f a a

and the x intercept is found by setting = y 0, that is, = x
−b

∂

∂

x
()f a

. Thus, the (+ k 1)th x axis

intersection point is

(3) = x
 + k 1

 −

∂

∂

x
()f x

k
x
k

()f x
k

∂

∂

x
()f x

k

 or = x
 + k 1

 − x
k

()f x
k

∂

∂

x
()f x

k

Page 1

2. A Symbolic Newton-Raphson Procedure

 We are all used to the Newton-Raphson method in a purely numerical context. What results if
we perform the iterations symbolically? Here is a procedure that symbolically implements the
Newton-Raphson method of finding roots as embodied in eq. (3). The arguments are the function
()f x , the starting point a, the number of iterations to perform n, and, if ()f x is not a procedure, a

fourth argument: the independent variable x.

newt , ,::f algebraic ::a algebraic ::n posintproc() :=
local ;, , , , ,k d dk fk x0 x

()type ,f procedureif then
 := d ()D f ;
 := x0 a;

k nfor to do
 := dk ()d x0 ;
 := fk ()f x0 ;

 and not ()type ,fk numeric < 1000 ()op ,[],2 1 ()cost / fk dkif then
 := x0 − x0 ()normal / fk dk
 := x0 − x0 ()factor / fk dkelse

fi
od

else
 ≠ nargs 4 ERROR(if then

.`: If f(x) is not a procedure, then the ` `4th argument must be the independent variable x.`)
fi;
if then finot ()type ,[]args 4 name ()ERROR `: Fourth argument x must be a name.` ;
 := x []args 4 ;
 := d ()diff ,f x ;
 := x0 a;

k nfor to do
 := dk ()subs , = x x0 d ;
 := fk ()subs , = x x0 f ;

 and not ()type ,fk numeric < 1000 ()op ,[],2 1 ()cost / fk dkif then
 := x0 − x0 ()normal / fk dk
 := x0 − x0 ()factor / fk dkelse

fi
od

fi
end

3. Examples

3.1. Roots of a Quadratic

 First, let's consider a simple quadratic:

Page 2

 := f ()convert ,[]()seq ,a
k

x
k = k .. 0 2 +

 := f + + a
0

a
1

x a
2

x
2

The second-order Newton-Raphson approximation to one of the roots of f, starting at a point
 = x b, is then given by

()newt , , ,f b 2 x

 − − b

 + + a
0

a
1

b a
2

b
2

 + a
1

2 a
2

b

a
2

() + + a
0

a
1

b a
2

b
2

2

 + + − a

1

2
2 a

1
a
2

b 2 a
2

2
b
2

2 a
2

a
0

() + a
1

2 a
2

b

We could put this in a simpler form, say ()factor%

−
 − − − + a

2

3
b

4
4 a

0
a
1

a
2

b 6 a
0

a
2

2
b
2

a
0

a
1

2
a
2

a
0

2

− − − + a

1

2
2 a

1
a
2

b 2 a
2

2
b

2
2 a

2
a
0

() + a
1

2 a
2

b

which involves significantly fewer operations, especially for larger iterations n. But the
former version has the advantage of explicitly showing the correction terms, making them
easy to isolate.

3.2. Roots of a Cubic

 Let's consider now a simple cubic, for which we know the roots.

 := f () − x 3 () + x 2 () − x 1

 := f () − x 3 () + x 2 () − x 1

The second-order Newton-Raphson root approximation, again starting at a point = x b, is

()newt , , ,f b 2 x

b
() − b 3 () + b 2 () − b 1

 − − 3 b
2

4 b 5
 −

2
() − 2 b 1 () − b 1

2
() + 2 b 1 () − b 3

2
() − b 2 () + b 2

2

() − + + + − − 12 b
6

48 b
5

23 b
4

56 b
3

174 b
2

296 b 137 () − − 3 b
2

4 b 5
 −

We could also use a Maple procedure for the function ()f x :

 := f → x () − x 3 () + x 2 () − x 1

 := f → x () − x 3 () + x 2 () − x 1

()newt , ,f b 2

Page 3

b
() − b 3 () + b 2 () − b 1

 − − 3 b
2

4 b 5
 −

2
() − 2 b 1 () − b 1

2
() + 2 b 1 () − b 3

2
() − b 2 () + b 2

2

() − + + + − − 12 b
6

48 b
5

23 b
4

56 b
3

174 b
2

296 b 137 () − − 3 b
2

4 b 5
 −

4. An Illustrative Convergence Plot

 Let's plot our simple test cubic:

()plot , , ,[],()f x 0 = x .. −3 4 = color [],blue black = labels [],"x" "f(x)"

 Now let's graphically illustrate the convergence to the roots, given several starting points. First
define a few convenient procedures.

• A procedure to create a list of point pairs of the form [iteration number, x intercept]

 := p proc() end,N b local ;n []()seq ,[],n ()newt , ,f b n = n .. 1 N

• A procedure to plot the point pairs as circles and to connect the points with line segments:

P , ,N b cproc() :=
global ;,p1 p2

 := p1 ()plot , , ,()p ,N b = style point = symbol circle = color black ;
 := p2 ()plot , ,()p ,N b = style line = color c ;
,p1 p2

Page 4

end

• A procedure to generate 5 illustrative cases and put them on one plot:

doit (), , , , ,N a1 a2 a3 a4 a5 plots
display

[(→ :=

, , , , ,()plot ,[], ,3 −2 1 = color black ()P , ,N a1 blue ()P , ,N a2 blue ()P , ,N a3 red ()P , ,N a4 red ()P , ,N a5 red
] = view [], .. 1 N .. −5 7 = title `x intercept vs. iteration` = titlefont [],HELVETICA 16 = axes box, , , ,)

Okay. Now create the plot.

()doit , , , , ,8 2.2 −1 −.338 −.3375 −.3393

 The locations of the roots are shown by the black lines. The iteration starting points were
purposely chosen to be perverse "guesses", leading to an artificial need for a higher number of
iterations. In practice, one would be a little more careful to start close to a root. Notice (red
curves) that the particular solution settled into can sensitively depend on the initial guess.

5. Equation Bloat

 By 5th order or so, the general solutions (i.e., pure symbolics and no numerics) are getting
somewhat ugly, even for this simple cubic test case. The "cost" of the 2nd order solution shown in
the Examples section is

()cost ()newt , ,f b 2

Page 5

 + + 21 additions 40 multiplications 3 divisions

The "cost" of the 5th order solution is

()cost ()newt , ,f b 5

 + + 670 additions 26979 multiplications 15 divisions

 Let's make a plot of the log of the total number of additions, multiplications, and divisions as a
function of number of iterations. First we write a procedure to take care of it.

costplot ::N posintproc() :=
local ;, , , , , , , , , ,p i j c d plt1 plt2 ylab fsiz ymin ymax

 := p [];
i Nfor to do

 := c ()cost ()newt , ,f b i ;
 := d 0;

for to do odj ()nops c if then else fi = ()nops ()op ,j c 1 := d + d 1 := d + d ()op ,[],j 1 c ;
 := p [],()op p [],i ()log10 d

od;
 := plt1 ()plot ,p = color blue ;
 := plt2)plot , , = color = style = symbol ;
 := 14;

ymin (trunc [[]p 1 2 ;
 := ymax + ()trunc [][]p ()nops p 2 1;

ylab :=
()[]plots textplot , ,[], ,1.0 − ymax .5 `log(operations)` = font [],HELVETICA fsiz = align RIGHT ;

[]plots display [], ,plt1 plt2 ylab = view [], .. .8 + N .2 .. ymin ymax, ,(
 = axesfont [],HELVETICA − fsiz 2 = axes box,)

end

Now create the equation bloat plot.

()costplot 6

We see that the equation bloat of the purely symbolic solution grows exponentially with the
number of iterations. In fact, the slope of the curve is approximately (but not quite) = m 1, so that
with each iteration the operation count mushrooms by a factor of almost 10.

Page 7

